django-easycart Documentation
Release 0.1.0

nevimov

May 28, 2016

Contents

1 Table of Contents

3

1.1 Quickstart e e e e e e e e e e e e e e e 3

1.2 CookbOOK e e e e e e e e e 6

1.3 Settings o o v i e e e e e e e e e e e e 8

1.4 Reference e e e e e e e e 8
Python Module Index 15

django-easycart Documentation, Release 0.1.0

Easycart is a flexible session-based shopping cart application for Django. It provides plenty of hooks for overriding
and extending the way it works.

By installing this app you get:
* Highly-customizable BaseCart and BaseItem classes to represent the user cart and items in it.

* A handy set of reusable components (views, urls and a context processor) for the most common tasks. These
components are completely optional.

Requirements: Python 3.4+ Django 1.8+

Contents 1

django-easycart Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Table of Contents

1.1 Quickstart

This document demonstrates how you can use Easycart to implement the shopping cart functionality in your django
project.

1.1.1 Install the app

Before you do anything else, ensure that Django Session Framework is enabled and configured.

Use pip to install Easycart:

$ pip install django-easycart

Add the app to your INSTALLED_APPS setting:

INSTALLED_APPS = [

'easycart',

1.1.2 Define your cart class

First, create a new django application:

‘$ python manage.py startapp cart

It will contain things not provided by Easycart, such as templates and static files. Those are unique to each project, so
it’s your responsibility to provide them.

Next, we need to create a customized cart class. Don’t worry, it’s really easy, just subclass BaseCart and override
its get__queryset () method:

cart/views.py
from easycart import BaseCart

We assume here that you've already defined your item model
in a separate app named "catalog".
from catalog.models import Item

https://docs.djangoproject.com/en/dev/topics/http/sessions/
https://pip.pypa.io/en/stable/

django-easycart Documentation, Release 0.1.0

class Cart (BaseCart) :

def get_queryset (self, pks):
return Item.objects.filter (pk__in=pks)

Now, our class knows how to communicate with the item model.

Note: For simplicity’s sake, the example above supposes that a single model is used to access all database information
about items. If you use multi-table inheritance, see this link.

There are many more customizations you can make to the cart class, check out Cookbook and Reference, after you
complete this tutorial.

1.1.3 Plug in ready-to-use views

Every cart needs to perform tasks like adding/removing items, changing the quantity associated with an item or emp-
tying the whole cart at once. You can write your own views for that purpose, using the cart class we’ve created above,
but what’s the point in reinventing the wheel? Just use the ones shipped with Easycart.

Add the following to your project settings:

EASYCART_CART_CLASS = 'cart.views.Cart'

Create cart/urls.py:

from django.conf.urls import url

urlpatterns = [
This pattern must always be the last
url('', include('easycart.urls'))

]

Include it in the root URLconf:

’url(r'Acart/', include ('cart.urls')),

Now, the cart can be operated by sending POST-requests to Easycart urls:

URL name View

cart-add AddItem

cart-remove RemovelItem
cart-change-quantity | ChangeItemQuantity
cart-empty EmptyCart

Tip: It would be wise to create a javascript API to handle these requests. Here’s an oversimplified example of such
an API that can serve as a starting point. It uses a bit of jQuery and assumes that CSRF-protection has already been
taken care of.

var cart = {
add: function (pk, quantity) {
quantity = quantity || 1

return $.post (URLS.addItem, {pk: pk, quantity: quantity}, 'json')

remove: function (itemPK) {
return $.post (URLS.removeltem, {pk: itemPK}, 'Json')

4 Chapter 1. Table of Contents

https://docs.djangoproject.com/en/dev/topics/db/models/#multi-table-inheritance
https://api.jquery.com/jquery.post/
https://docs.djangoproject.com/en/dev/ref/csrf/
https://docs.djangoproject.com/en/dev/ref/csrf/#ajax

django-easycart Documentation, Release 0.1.0

changeQuantity: function (pk, quantity) {
return $.post (URLS.changeQuantity, {pk: pk, quantity: quantity}, 'json')

empty: function () {
$.post (URLS.emptyCart, 'Json')

Inline a script similar to the one below in your base template, so you don’t have to hardcode the urls.

<script>

var URLS = {
addItem: '{% url "cart-add" %}',
removeltem: '{% url "cart-remove" $%}',
changeQuantity: '{% url "cart-change-quantity" $%}',
emptyCart: '{% url "cart-empty" $}',

}

</script>

1.1.4 Access the cart from templates

To enable the built-in cart context processor, add context_processors.cart to your project settings:

TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'"APP_DIRS': True,
'"OPTIONS': {
'context_processors': [
other context processors
'easycart.context_processors.cart',
]l
}I
}I

Now, the cart can be accessed in any template through context variable cart like this:

{{ cart.item_count }}
{{ cart.total_price }}

{% for item in cart.list_items %}

<div>
{# Access the item's model instance using its "obj" attribute #}
{{ item.obj.name }}

{{ item.price }}
{{ item.quantity }}
{{ item.total }}

</div>

% endfor %}

The name of the variable can be changed using the EASYCART _CART_VAR setting.

1.1. Quickstart 5

https://docs.djangoproject.com/en/dev/ref/templates/api/#writing-your-own-context-processors

django-easycart Documentation, Release 0.1.0

Well, that’s all. Of course, you still need to write some front-end scripts and create additional views (for instance, for
order processing), but all of this is far beyond the scope of this document.

1.2 Cookbook

1.2.1 Adapting to multiple item models

If you use multi-table inheritance in your item models, then you will likely want that cart items were associated with
instances of their respective child models. This can be achieved by overriding the process_ob ject () method of
the BaseCart class.

Let’s assume we have the following models:

catalog/models.py
from django.db import models

class Item (models.Model) :
name = models.CharField(max_length=40)
price = models.PositivelntegerField()

class Book (Item):
author = models.CharField(max_length=40)

class Magazine (Item) :
issue = models.CharField(max_length=40)

Instances of ITtem can access their respective child model through attributes book and magazine. The problem is, we
don’t know in advance which one to use. The easiest way to circumvent it is to use a tryexcept block to access each
attribute one by one:

from django.core.exceptions import ObjectDoesNotExist
from easycart import BaseCart

CATEGORIES = ('book', 'magazine')

class Cart (BaseCart) :

def get_qgueryset (self, pks):
return Item.objects.filter (pk__in=pks).select_related («CATEGORIES)

def process_object (self, obj):
for category in CATEGORIES:
try:
return getattr (obj, category)
except ObjectDoesNotExist:
pass

Alternatively, just store the name of the right attribute in a separate field on Item:

class Item(models.Model) :
name = models.CharField(max_length=40)
price = models.PositiveIntegerField()
category = models.CharField(max_length=50, editable=False)

def save(self, =*args, xxkwargs):
if not self.category:

6 Chapter 1. Table of Contents

https://docs.djangoproject.com/en/dev/topics/db/models/#multi-table-inheritance

django-easycart Documentation, Release 0.1.0

self.category = self.__class__.__name__.lower ()
super () .save (xargs, **kwargs)

In this case, your cart class may look something like this:

class Cart (BaseCart) :

def get_queryset (self, pks):
return Item.objects.filter (pk__in=pks).select_related (xCATEGORIES)

def process_object (self, obj):
return getattr (obj, obj.category)

Attention: Whatever technique you choose, be sure to use select_related() to avoid redundant queries to the
database.

1.2.2 Associating arbitrary data with cart items

You can associate arbitrary data with items by passing extra keyword arguments to the cart’s method add ().

As an example, we will save the date and time the item is added to the cart. Having a timestamp may be handy in quite
a few scenarios. For example, many e-commerce sites have a widget displaying a list of items recently added to the
cart.

To implement such functionality, create a cart class similar to the one below:

import time
from easycart import BaseCart

class Cart (BaseCart) :

def add(self, pk, quantity=1):
super (Cart, self).add(pk, quantity, timestamp=time.time())

def list_items_by_timestamp (self):
return self.list_items (sort_key=lambda item: item.timestamp, reverse=True)

Now, in your templates, do something like:

{% for item in cart.list_items_by timestamp|slice:":6" %}
{{ item.name }}
{{ item.price }}

% endfor %}

1.2.3 Adding per item discounts and taxes

To change the way the individual item prices are calculated, you need to override the total () method of the
BaseItemclass.

Assume we have the following models.py:

from django.db import models

class Item(models.Model) :
price = models.DecimalField(decimal_places=2, max_digits=8)
Suppose discounts and taxes are stored as percentages

1.2. Cookbook 7

https://docs.djangoproject.com/en/dev/ref/models/querysets/#select-related

django-easycart Documentation, Release 0.1.0

discount = models.IntegerField(default=0)
tax = models.IntegerField(default=0)

In this case, your item class may look like this:

class CartItem (BaselItem) :

@property

def total(self):
discount_mod = 1 - self.obj.discount/100
tax_mod = 1 + self.obj.tax/100
return self.price * discount_mod * tax_mod

class Cart (BaseCart) :
Point the cart to the new item class
item_class = CartItem

1.2.4 Limiting the maximum quantity allowed per item
You may want to limit the maximum quantity allowed per item, for example, to ensure that the user can’t put more
items in his cart than you have in stock.

See the max_quant ity attribute of the BaseCart class.

1.3 Settings

Most of the Easycart behavior is customized by overriding and extending the BaseCart and BaseItem classes,
however, a few things are controlled through the settings below:

EASYCART CART_ CLASS
A string pointing to your cart class.

Has no default value, must always be set, if you want to use built-in views.

EASYCART CART_VAR
default: ‘cart’

The name for the context variable providing access to the cart from templates.

EASYCART_SESSION_KEY
default: ‘easycart’

Key in request . session under which to store the cart data.

1.4 Reference

1.4.1 easycart.views module

A set of views every cart needs.

On success, each view returns a JSON-response with the cart representation. For the details on the format of the return
value, see the encode () method of the BaseCart class.

8 Chapter 1. Table of Contents

django-easycart Documentation, Release 0.1.0

Note: All of the views in this module accept only POST requests.

class easycart.views.AddItem (**kwargs)
Add an item to the cart.

This view expects request. POST to contain:

key value
pk the primary key of an item to add
quantity | a quantity that should be associated with the item

class easycart.views.RemoveItem (**kwargs)
Remove an item from the cart.

Expects request. POST to contain key pk. The associated value should be the primary key of an item you wish
to remove.

class easycart.views.ChangeItemQuantity (**kwargs)
Change the quantity of an item.

This view expects request.POST to contain:

key value
pk the primary key of an item
quantity | anew quantity to associate with the item

class easycart.views.EmptyCart (**kwargs)
Remove all items from the cart.

1.4.2 easycart.cart module

Core classes to represent the user cart and items in it.

BaseCart
class easycart.cart .BaseCart (request)
Base class representing the user cart.
In the simplest case, you just subclass it in your views and override the get_ queryset () method.

If multi-table inheritance is used to store information about items, then you may also want to override
process_object () as well.

Parameters request (django.http.HttpRequest)
Variables

* items (dict)— A map between item primary keys (converted to strings) and correspond-
ing instances of item class. If, for some reason, you need to modify items directly,
don’t forget to call update () afterwards.

* item_count (int)— The total number of items in the cart. By default, only unique items
are counted.

* total_price (same as the type of item prices) — The total value of all
items in the cart.

* request — A reference to the request used to instantiate the cart.

1.4. Reference 9

django-easycart Documentation, Release 0.1.0

item class
Class to use to represent cart items.

alias of BaseItem

add (pk, quantity=1, **kwargs)
Add an item to the cart.

If the item is already in the cart, then its quantity will be increased by quantity units.
Parameters
* pk (str or int) — The primary key of the item.
e quantity (int-convertible) — A number of units of to add.
» **kwargs — Extra keyword arguments to pass to the item class constructor.
Raises ItemNotInDatabase — Database doesn’t contain an item with the given primary key.

change_quantity (pk, quantity)
Change the quantity of an item.

Parameters
* pk (str or int) — The primary key of the item.
* quantity (int-convertible) — A new quantity.
Raises TtemNot InCart — Attempting to change the quantity of an item that is not in the cart.

remove (pk)
Remove an item from the cart.

Parameters pk (szr or int) — The primary key of the item.
Raises TtemNot InCart — Attempting to delete an item that is not in the cart.

empty ()
Remove all items from the cart.

list_items (sort_key=None, reverse=False)
Return a list of cart items.

Parameters

* sort_Kkey (func) — A function to customize the list order, same as the ‘key’ argument to the
built-in sorted ().

¢ reverse (bool) — If set to True, the sort order will be reversed.

Returns /ist — List of 1 tem_class instances.

Examples

>>> cart = Cart (request)
>>> cart.list_items (lambda item: item.obj.name)
[<CartItem: obj=bar, quantity=3>,
<CartItem: obj=foo, quantity=1>,
<CartItem: obj=nox, quantity=5>]
>>> cart.list_items (lambda item: item.quantity, reverse=True)
[<CartItem: obj=nox, quantity=5>,
<CartItem: obj=bar, quantity=3>,
<CartItem: obj=foo, quantity=1>]

10 Chapter 1. Table of Contents

django-easycart Documentation, Release 0.1.0

encode (formatter=None)
Return a representation of the cart as a JSON-response.

Parameters formatter (func, optional) — A function that accepts the cart representation and
returns its formatted version.

Returns django.http.JsonResponse

Examples

Assume that items with primary keys “1” and “4” are already in the cart.

>>> cart = Cart (request)
>>> def format_total_price(cart_repr):
return intcomma (cart_repr['totalPrice'])

>>> json_response = cart.encode (format_total_price)
>>> json_response.content
b'{
"items": {
'1': {"price": 100, "quantity": 10, "total": 1000},

'4': {"price": 50, "quantity": 20, "total": 1000},
by
"itemCount": 2,
"totalPrice": "2,000",
}V

get_queryset (pks)
Construct a queryset using given primary keys.

The cart is pretty much useless until this method is overriden. The default implementation just raises
NotImplementedError.

Parameters pks (list of str)

Returns django.db.models.query.QuerySet

Examples

In the most basic case this method may look like the one below:

def get_qgueryset (self, pks):
return Item.objects.filter (pk___in=pks)

process_object (0bj)
Process an object before it will be used to create a cart item.

This method provides a hook to perform arbitrary actions on the item’s model instance, before it gets
associated with the cart item. However, it’s usually used just to replace the passed model instance with its
related object. The default implementation simply returns the passed object.

Parameters obj (item model) — An item’s model instance.

Returns item model — A model instance that will be used as the obj argumentto item class.

handle_stale_items (pks)
Handle cart items that are no longer present in the database.

The default implementation results in silent removal of stale items from the cart.

Reference 11

django-easycart Documentation, Release 0.1.0

Parameters pks (set of str) — Primary keys of stale items.

create_items (session_items)
Instantiate cart items from session data.

The value returned by this method is used to populate the cart’s items attribute.

Parameters session_items (dict) — A dictionary of pk-quantity mappings (each pk is a string).
For example: {*1": 5, '3': 2}.

Returns

dict — A map between the session_items keys and instances of i tem_class. For example:

{"1"': <CartItem: obj=foo, quantity=5>,
'3'": <CartlItem: obj=bar, quantity=2>}

update ()
Update the cart.

First this method updates attributes dependent on the cart’s items, such as total_price or item_count. After
that, it saves the new cart state to the session.

Generally, you’ll need to call this method by yourself, only when implementing new methods that directly
change the items attribute.

count_items (unique=True)
Count items in the cart.

Parameters unique (bool-convertible, optional)

Returns int — If unique is truthy, then the result is the number of items in the cart. Otherwise,
it’s the sum of all item quantities.

count_total_price()
Get the total price of all items in the cart.

Baseltem
class easycart.cart .BaseItem (obj, quantity=1, **kwargs)
Base class representing the cart item.
Parameters

* ohj (subclass of django.db.models.Model) — A model instance holding database information
about the item. The instance is required to have an attribute containing the item’s price.

* quantity (int, optional) — A quantity to associate with the item.
Variables
* obj — A reference to the obj argument.

* price (same as obj.price) — The price of the item (a reference to the corresponding attribute
on the obyj).

Raises 'nvalidItemQuantity — Argument quantity doesn’t pass the validation by the
clean_quantity () method.

PRICE_ATTR = ‘price’
str — The name of the obj attribute containing the item’s price.

12 Chapter 1. Table of Contents

django-easycart Documentation, Release 0.1.0

max_quantity = None
The maximum quantity allowed per item.

Used by the clean quantity () method. Should be either a positive integer or a falsy value. The
latter case disables the check. Note that you can make it a property to provide dynamic values.

Examples

If you want to ensure that the user can’t put more items in his cart than you have in stock, you may write

something like this:

class CartItem(Baseltem) :
@property
def max_quantity(self):
return self.obj.stock

quantity
int — The quantity associated with the item.

A read/write property.

New values are checked and normalized to integers by the c1ean_quantity () method.

total
same as obj.price — Total price of the item.

A read-only property.

The default implementation simply returns the product of the item’s price and quantity. Override to adjust
for things like an individual item discount or taxes.

clean_quantity (quantity)
Check and normalize the quantity.

The following checks are performed:
the quantity can be converted to an integer
*it’s positive
eit’s doesn’t exceed the value of max_quantity
Parameters quantity (int-convertible)

Returns int — The normalized quanity.

Raises TnvalidItemQuantity — The quantity can’t be cleaned due to one of the reasons
listed above.

Module Exceptions

class easycart.cart.CartException
Bases: Exception
Base class for cart exceptions.

class easycart.cart.InvalidItemQuantity
Bases: easycart.cart.CartException

Provided item quantity is invalid.

1.4. Reference 13

django-easycart Documentation, Release 0.1.0

class easycart.cart.ItemNotInCart (pk, *args)
Bases: easycart.cart.CartException

Item with the given pk is not in the cart.

class easycart.cart.ItemNotInDatabase
Bases: easycart.cart.CartException

Database doesn’t contain an item with the given primary key.

14

Chapter 1. Table of Contents

Python Module Index

e

easycart.cart,9
easycart.views, 8

15

django-easycart Documentation, Release 0.1.0

16 Python Module Index

Index

A

add() (easycart.cart.BaseCart method), 10
AddlItem (class in easycart.views), 9

B

BaseCart (class in easycart.cart), 9
Baseltem (class in easycart.cart), 12

C

CartException (class in easycart.cart), 13
change_quantity() (easycart.cart.BaseCart method), 10
ChangeltemQuantity (class in easycart.views), 9
clean_quantity() (easycart.cart.Baseltem method), 13
command line option
EASYCART_CART_CLASS, 8
EASYCART_CART_VAR, 8
EASYCART_SESSION_KEY, 8
count_items() (easycart.cart.BaseCart method), 12
count_total_price() (easycart.cart.BaseCart method), 12
create_items() (easycart.cart.BaseCart method), 12

E

easycart.cart (module), 9
easycart.views (module), 8
EASYCART_CART_CLASS

command line option, 8
EASYCART_CART_VAR

command line option, 8
EASYCART_SESSION_KEY

command line option, 8
empty() (easycart.cart.BaseCart method), 10
EmptyCart (class in easycart.views), 9
encode() (easycart.cart.BaseCart method), 10

G

get_queryset() (easycart.cart.BaseCart method), 11

H

handle_stale_items() (easycart.cart.BaseCart method), 11

InvalidltemQuantity (class in easycart.cart), 13
item_class (easycart.cart.BaseCart attribute), 9
ItemNotInCart (class in easycart.cart), 13

ItemNotInDatabase (class in easycart.cart), 14

L

list_items() (easycart.cart.BaseCart method), 10

M

max_quantity (easycart.cart.Baseltem attribute), 12

P

PRICE_ATTR (easycart.cart.Baseltem attribute), 12
process_object() (easycart.cart.BaseCart method), 11

Q

quantity (easycart.cart.Baseltem attribute), 13

R

remove() (easycart.cart.BaseCart method), 10
Removeltem (class in easycart.views), 9

T

total (easycart.cart.Baseltem attribute), 13

U

update() (easycart.cart.BaseCart method), 12

17

	Table of Contents
	Quickstart
	Cookbook
	Settings
	Reference

	Python Module Index

