

 Navigation

 	
 index

 	
 next |

 	django-easycart 0.1.0 documentation

Welcome to django-easycart’s documentation!

Easycart is a flexible session-based shopping cart application for Django.
It provides plenty of hooks for overriding and extending the way it works.

By installing this app you get:

	Highly-customizable BaseCart and BaseItem
classes to represent the user cart and items in it.

	A handy set of reusable components (views, urls and a context processor) for
the most common tasks. These components are completely optional.

Requirements: Python 3.4+ Django 1.8+

Table of Contents

	Quickstart
	Install the app

	Define your cart class

	Plug in ready-to-use views

	Access the cart from templates

	Cookbook
	Adapting to multiple item models

	Associating arbitrary data with cart items

	Adding per item discounts and taxes

	Limiting the maximum quantity allowed per item

	Settings

	Reference
	easycart.views module

	easycart.cart module

 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-easycart 0.1.0 documentation

Quickstart

This document demonstrates how you can use Easycart to implement the shopping
cart functionality in your django project.

Install the app

Before you do anything else, ensure that Django Session Framework is
enabled and configured [https://docs.djangoproject.com/en/dev/topics/http/sessions/].

Use pip [https://pip.pypa.io/en/stable/] to install Easycart:

$ pip install django-easycart

Add the app to your INSTALLED_APPS setting:

INSTALLED_APPS = [
 ...
 'easycart',
]

Define your cart class

First, create a new django application:

$ python manage.py startapp cart

It will contain things not provided by Easycart, such as templates and static
files. Those are unique to each project, so it’s your responsibility to provide
them.

Next, we need to create a customized cart class. Don’t worry, it’s really easy,
just subclass BaseCart and override its
get_queryset() method:

cart/views.py
from easycart import BaseCart

We assume here that you've already defined your item model
in a separate app named "catalog".
from catalog.models import Item

class Cart(BaseCart):

 def get_queryset(self, pks):
 return Item.objects.filter(pk__in=pks)

Now, our class knows how to communicate with the item model.

Note

For simplicity’s sake, the example above supposes that a single model is
used to access all database information about items. If you use multi-table
inheritance [https://docs.djangoproject.com/en/dev/topics/db/models/#multi-table-inheritance], see this link.

There are many more customizations you can make to the cart class, check out
Cookbook and Reference, after you complete this tutorial.

Plug in ready-to-use views

Every cart needs to perform tasks like adding/removing items, changing the
quantity associated with an item or emptying the whole cart at once. You can
write your own views for that purpose, using the cart class we’ve created
above, but what’s the point in reinventing the wheel? Just use the ones shipped with Easycart.

Add the following to your project settings:

EASYCART_CART_CLASS = 'cart.views.Cart'

Create cart/urls.py:

from django.conf.urls import url

urlpatterns = [
 # This pattern must always be the last
 url('', include('easycart.urls'))
]

Include it in the root URLconf:

url(r'^cart/', include('cart.urls')),

Now, the cart can be operated by sending POST-requests to Easycart urls:

	URL name
	View

	cart-add
	AddItem

	cart-remove
	RemoveItem

	cart-change-quantity
	ChangeItemQuantity

	cart-empty
	EmptyCart

Tip

It would be wise to create a javascript API to handle these requests.
Here’s an oversimplified example of such an API that can serve as a
starting point. It uses a bit of jQuery [https://api.jquery.com/jquery.post/] and assumes that
CSRF-protection [https://docs.djangoproject.com/en/dev/ref/csrf/] has already been taken care of [https://docs.djangoproject.com/en/dev/ref/csrf/#ajax].

var cart = {
 add: function (pk, quantity) {
 quantity = quantity || 1
 return $.post(URLS.addItem, {pk: pk, quantity: quantity}, 'json')
 }

 remove: function (itemPK) {
 return $.post(URLS.removeItem, {pk: itemPK}, 'json')
 }

 changeQuantity: function (pk, quantity) {
 return $.post(URLS.changeQuantity, {pk: pk, quantity: quantity}, 'json')
 }

 empty: function () {
 $.post(URLS.emptyCart, 'json')
 }
}

Inline a script similar to the one below in your base template, so you
don’t have to hardcode the urls.

<script>
var URLS = {
 addItem: '{% url "cart-add" %}',
 removeItem: '{% url "cart-remove" %}',
 changeQuantity: '{% url "cart-change-quantity" %}',
 emptyCart: '{% url "cart-empty" %}',
}
</script>

Access the cart from templates

To enable the built-in cart context processor [https://docs.djangoproject.com/en/dev/ref/templates/api/#writing-your-own-context-processors], add
context_processors.cart to your project settings:

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 # other context processors
 'easycart.context_processors.cart',
],
 },
 },
]

Now, the cart can be accessed in any template through context variable
cart like this:

{{ cart.item_count }}
{{ cart.total_price }}

{% for item in cart.list_items %}
<div>
 {# Access the item's model instance using its "obj" attribute #}
 {{ item.obj.name }}

 {{ item.price }}
 {{ item.quantity }}
 {{ item.total }}
</div>
{% endfor %}

The name of the variable can be changed using the EASYCART_CART_VAR setting.

Well, that’s all. Of course, you still need to write some front-end scripts and
create additional views (for instance, for order processing), but all of this
is far beyond the scope of this document.

 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-easycart 0.1.0 documentation

Cookbook

Adapting to multiple item models

If you use multi-table inheritance [https://docs.djangoproject.com/en/dev/topics/db/models/#multi-table-inheritance] in your item models, then you will likely
want that cart items were associated with instances of their respective child
models. This can be achieved by overriding the
process_object() method of the BaseCart
class.

Let’s assume we have the following models:

catalog/models.py
from django.db import models

class Item(models.Model):
 name = models.CharField(max_length=40)
 price = models.PositiveIntegerField()

class Book(Item):
 author = models.CharField(max_length=40)

class Magazine(Item):
 issue = models.CharField(max_length=40)

Instances of Item can access their respective child model through
attributes book and magazine. The problem is, we don’t know in advance
which one to use. The easiest way to circumvent it is to use a try‑except block
to access each attribute one by one:

from django.core.exceptions import ObjectDoesNotExist
from easycart import BaseCart

CATEGORIES = ('book', 'magazine')

class Cart(BaseCart):

 def get_queryset(self, pks):
 return Item.objects.filter(pk__in=pks).select_related(*CATEGORIES)

 def process_object(self, obj):
 for category in CATEGORIES:
 try:
 return getattr(obj, category)
 except ObjectDoesNotExist:
 pass

Alternatively, just store the name of the right attribute in a separate field
on Item:

class Item(models.Model):
 name = models.CharField(max_length=40)
 price = models.PositiveIntegerField()
 category = models.CharField(max_length=50, editable=False)

 def save(self, *args, **kwargs):
 if not self.category:
 self.category = self.__class__.__name__.lower()
 super().save(*args, **kwargs)

In this case, your cart class may look something like this:

class Cart(BaseCart):

 def get_queryset(self, pks):
 return Item.objects.filter(pk__in=pks).select_related(*CATEGORIES)

 def process_object(self, obj):
 return getattr(obj, obj.category)

Attention

Whatever technique you choose, be sure to use select_related() [https://docs.djangoproject.com/en/dev/ref/models/querysets/#select-related] to avoid
redundant queries to the database.

Associating arbitrary data with cart items

You can associate arbitrary data with items by passing extra keyword arguments
to the cart’s method add().

As an example, we will save the date and time the item is added to the cart.
Having a timestamp may be handy in quite a few scenarios. For example, many
e-commerce sites have a widget displaying a list of items recently added to the
cart.

To implement such functionality, create a cart class similar to the one below:

import time
from easycart import BaseCart

class Cart(BaseCart):

 def add(self, pk, quantity=1):
 super(Cart, self).add(pk, quantity, timestamp=time.time())

 def list_items_by_timestamp(self):
 return self.list_items(sort_key=lambda item: item.timestamp, reverse=True)

Now, in your templates, do something like:

{% for item in cart.list_items_by_timestamp|slice:":6" %}
 {{ item.name }}
 {{ item.price }}
{% endfor %}

Adding per item discounts and taxes

To change the way the individual item prices are calculated, you need to
override the total() method of the BaseItem
class.

Assume we have the following models.py:

from django.db import models

class Item(models.Model):
 price = models.DecimalField(decimal_places=2, max_digits=8)
 # Suppose discounts and taxes are stored as percentages
 discount = models.IntegerField(default=0)
 tax = models.IntegerField(default=0)

In this case, your item class may look like this:

class CartItem(BaseItem):

 @property
 def total(self):
 discount_mod = 1 - self.obj.discount/100
 tax_mod = 1 + self.obj.tax/100
 return self.price * discount_mod * tax_mod

class Cart(BaseCart):
 # Point the cart to the new item class
 item_class = CartItem

Limiting the maximum quantity allowed per item

You may want to limit the maximum quantity allowed per item, for example, to
ensure that the user can’t put more items in his cart than you have in stock.

See the max_quantity attribute of the
BaseCart class.

 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-easycart 0.1.0 documentation

Settings

Most of the Easycart behavior is customized by overriding and extending the
BaseCart and BaseItem classes, however, a few
things are controlled through the settings below:

	
EASYCART_CART_CLASS

	A string pointing to your cart class.

Has no default value, must always be set, if you want to use
built-in views.

	
EASYCART_CART_VAR

	default: ‘cart’

The name for the context variable providing
access to the cart from templates.

	
EASYCART_SESSION_KEY

	default: ‘easycart’

Key in request.session under which to store the cart data.

 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-easycart 0.1.0 documentation

Reference

	easycart.views module

	easycart.cart module
	BaseCart

	BaseItem

	Module Exceptions

 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-easycart 0.1.0 documentation

 	Reference

easycart.views module

 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 previous |

 	django-easycart 0.1.0 documentation

 	Reference

easycart.cart module

BaseCart

BaseItem

Module Exceptions

 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	django-easycart 0.1.0 documentation

Index

 C
 | E

C

 	

 	
 command line option

 	

 	EASYCART_CART_CLASS

 	EASYCART_CART_VAR

 	EASYCART_SESSION_KEY

E

 	

 	
 EASYCART_CART_CLASS

 	

 	command line option

 	
 EASYCART_CART_VAR

 	

 	command line option

 	

 	
 EASYCART_SESSION_KEY

 	

 	command line option

 Created using Sphinx 1.4.1.

 _static/comment.png

search.html

 Navigation

 		
 index

 		django-easycart 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 Created using Sphinx 1.4.1.

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/down-pressed.png

_static/minus.png

